http://www.nytimes.com/2007/08/19/sports/playmagazine/0819play-brain.html?ex=1188273600&en=842c3ba0d994a5cf&ei=5070
“….Scientists have suspected for decades that exercise, particularly regular aerobic exercise, can affect the brain. But they could only speculate as to how. Now an expanding body of research shows that exercise can improve the performance of the brain by boosting memory and cognitive processing speed. Exercise can, in fact, create a stronger, faster brain.
This theory emerged from those mouse studies at the Salk Institute. After conducting maze tests, the neuroscientist Fred H. Gage and his colleagues examined brain samples from the mice. Conventional wisdom had long held that animal (and human) brains weren’t malleable: after a brief window early in life, the brain could no longer grow or renew itself. The supply of neurons — the brain cells that enable us to think — was believed to be fixed almost from birth. As the cells died through aging, mental function declined. The damage couldn’t be staved off or repaired.
Gage’s mice proved otherwise. Before being euthanized, the animals had been injected with a chemical compound that incorporates itself into actively dividing cells. During autopsy, those cells could be identified by using a dye. Gage and his team presumed they wouldn’t find such cells in the mice’s brain tissue, but to their astonishment, they did. Up until the point of death, the mice were creating fresh neurons. Their brains were regenerating themselves.
All of the mice showed this vivid proof of what’s known as “neurogenesis,” or the creation of new neurons. But the brains of the athletic mice in particular showed many more. These mice, the ones that scampered on running wheels, were producing two to three times as many new neurons as the mice that didn’t exercise.
But did neurogenesis also happen in the human brain? To find out, Gage and his colleagues had obtained brain tissue from deceased cancer patients who had donated their bodies to research. While still living, these people were injected with the same type of compound used on Gage’s mice. (Pathologists were hoping to learn more about how quickly the patients’ tumor cells were growing.) When Gage dyed their brain samples, he again saw new neurons. Like the mice, the humans showed evidence of neurogenesis.
….
This spring, neuroscientists at Columbia University in New York City published a study in which a group of men and women, ranging in age from 21 to 45, began working out for one hour four times a week. After 12 weeks, the test subjects, predictably, became more fit. Their VO2 max, the standard measure of how much oxygen a person takes in while exercising, rose significantly.
But something else happened as a result of all those workouts: blood flowed at a much higher volume to a part of the brain responsible for neurogenesis. Functional M.R.I.’s showed that a portion of each person’s hippocampus received almost twice the blood volume as it did before. Scientists suspect that the blood pumping into that part of the brain was helping to produce fresh neurons.
The hippocampus plays a large role in how mammals create and process memories; it also plays a role in cognition. If your hippocampus is damaged, you most likely have trouble learning facts and forming new memories. Age plays a factor, too. As you get older, your brain gets smaller, and one of the areas most prone to this shrinkage is the hippocampus. (This can start depressingly early, in your 30’s.) Many neurologists believe that the loss of neurons in the hippocampus may be a primary cause of the cognitive decay associated with aging. A number of studies have shown that people with Alzheimer’s and other forms of dementia tend to have smaller-than-normal hippocampi.
The Columbia study suggests that shrinkage to parts of the hippocampus can be slowed via exercise. The subjects showed significant improvements in memory, as measured by a word-recall test. Those with the biggest increases in VO2 max had the best scores of all.
“It’s reasonable to infer, though we’re not yet certain, that neurogenesis was happening in the people’s hippocampi,” says Scott A. Small, an associate professor of neurology at Columbia and the senior author of the study, “and that working out was driving the neurogenesis.”