Should tell your kids they’re smart? Not according to Po Bronson’s recent article in New York Magazine:
…Giving kids the label of “smart” does not prevent them from underperforming. It might actually be causing it.
For the past ten years, psychologist Carol Dweck and her team at Columbia (she’s now at Stanford) studied the effect of praise on students in a dozen New York schools. Her seminal work—a series of experiments on 400 fifth-graders—paints the picture most clearly.
Dweck sent four female research assistants into New York fifth-grade classrooms. The researchers would take a single child out of the classroom for a nonverbal IQ test consisting of a series of puzzles—puzzles easy enough that all the children would do fairly well. Once the child finished the test, the researchers told each student his score, then gave him a single line of praise. Randomly divided into groups, some were praised for their intelligence. They were told, “You must be smart at this.” Other students were praised for their effort: “You must have worked really hard.”
Why just a single line of praise? “We wanted to see how sensitive children were,” Dweck explained. “We had a hunch that one line might be enough to see an effect.”
Then the students were given a choice of test for the second round. One choice was a test that would be more difficult than the first, but the researchers told the kids that they’d learn a lot from attempting the puzzles. The other choice, Dweck’s team explained, was an easy test, just like the first. Of those praised for their effort, 90 percent chose the harder set of puzzles. Of those praised for their intelligence, a majority chose the easy test. The “smart” kids took the cop-out.
Why did this happen? “When we praise children for their intelligence,” Dweck wrote in her study summary, “we tell them that this is the name of the game: Look smart, don’t risk making mistakes.” And that’s what the fifth-graders had done: They’d chosen to look smart and avoid the risk of being embarrassed.
In a subsequent round, none of the fifth-graders had a choice. The test was difficult, designed for kids two years ahead of their grade level. Predictably, everyone failed. But again, the two groups of children, divided at random at the study’s start, responded differently. Those praised for their effort on the first test assumed they simply hadn’t focused hard enough on this test. “They got very involved, willing to try every solution to the puzzles,” Dweck recalled. “Many of them remarked, unprovoked, ‘This is my favorite test.’ ” Not so for those praised for their smarts. They assumed their failure was evidence that they weren’t really smart at all. “Just watching them, you could see the strain. They were sweating and miserable.”
Having artificially induced a round of failure, Dweck’s researchers then gave all the fifth-graders a final round of tests that were engineered to be as easy as the first round. Those who had been praised for their effort significantly improved on their first score—by about 30 percent. Those who’d been told they were smart did worse than they had at the very beginning—by about 20 percent.
So what can you do to foster persistence?
But it turns out that the ability to repeatedly respond to failure by exerting more effort—instead of simply giving up—is a trait well studied in psychology. People with this trait, persistence, rebound well and can sustain their motivation through long periods of delayed gratification. Delving into this research, I learned that persistence turns out to be more than a conscious act of will; it’s also an unconscious response, governed by a circuit in the brain. Dr. Robert Cloninger at Washington University in St. Louis located the circuit in a part of the brain called the orbital and medial prefrontal cortex. It monitors the reward center of the brain, and like a switch, it intervenes when there’s a lack of immediate reward. When it switches on, it’s telling the rest of the brain, “Don’t stop trying. There’s dopa [the brain’s chemical reward for success] on the horizon.” While putting people through MRI scans, Cloninger could see this switch lighting up regularly in some. In others, barely at all.
What makes some people wired to have an active circuit?
Cloninger has trained rats and mice in mazes to have persistence by carefully not rewarding them when they get to the finish. “The key is intermittent reinforcement,” says Cloninger. The brain has to learn that frustrating spells can be worked through. “A person who grows up getting too frequent rewards will not have persistence, because they’ll quit when the rewards disappear.”
Carol Dweck has published a book called Mindset: The New Psychology of Success, and Cloninger has one out called Feeling Good
Pointer to article via tdj.